

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Благовещенский государственный педагогический университет»

ОСНОВНАЯ ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА

Рабочая программа дисциплины

УТВЕРЖДАЮ

И.о. декана физико-математического факультета ФГБОУ ВО «БГПУ»

___ О.А. Днепровская «22» мая 2019 г.

Оценочные материалы по дисциплине ЧИСЛОВЫЕ СИСТЕМЫ

Направление подготовки 44.03.01 ПЕДАГОГИЧЕСКОЕ ОБРАЗОВАНИЕ

> Профиль «МАТЕМАТИКА»

Уровень высшего образования БАКАЛАВРИАТ

Принята на заседании кафедры физического и математического образования (протокол № 9 от «15» мая 2019 г.)

СОДЕРЖАНИЕ

1 ПОЯСНИТЕЛЬНАЯ ЗАПИСКА	3
2 УЧЕБНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ	4
3 СОДЕРЖАНИЕ ТЕМ (РАЗДЕЛОВ)	4
4 МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ (УКАЗАНИЯ) ДЛЯ СТУДЕНТОВ ПО	
ИЗУЧЕНИЮ ДИСЦИПЛИНЫ	5
5 ПРАКТИКУМ ПО ДИСЦИПЛИНЕ	7
6 ДИДАКТИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ КОНТРОЛЯ (САМОКОНТРОЛЯ)	
УСВОЕННОГО МАТЕРИАЛА	9
7 ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ	16
В ПРОЦЕССЕ ОБУЧЕНИЯ	16
8 ОСОБЕННОСТИ ИЗУЧЕНИЯ ДИСЦИПЛИНЫ ИНВАЛИДАМИ И ЛИЦАМИ С	
ОГРАНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ	16
9 СПИСОК ЛИТЕРАТУРЫ И ИНФОРМАЦИОННЫХ РЕСУРСОВ	16
10 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА	18
11 ЛИСТ ИЗМЕНЕНИЙ И ДОПОЛНЕНИЙ	19

1 ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

- **1.1 Цель дисциплины**: углубить и расширить представление будущего учителя математики о понятии числа как элемента соответствующей числовой системы.
- **1.2 Место дисциплины в структуре ООП**: Дисциплина «Числовые системы» относится к дисциплинам обязательной части блока Б1 (Б1.В.03).
- **1.3** Дисциплина направлена на формирование следующих компетенций: УК-1, ПК-2, ОПК-8:
- **УК-1.** Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач, **индикаторами** достижения которой является:
- УК-1.1 Демонстрирует знание особенностей системного и критического мышления и готовность к нему.
- **ПК-2.** Способен осуществлять педагогическую деятельность по профильным предметам (дисциплинам, модулям) в рамках программ основного общего и среднего общего образования; индикаторами достижения которой является:
- ПК-2.2 Владеет основными положениями классических разделов математической науки, системой основных математических структур и методов.
 - **ОПК-8**. Способен осуществлять педагогическую деятельность на основе специальных научных знаний, **индикаторами** достижения которой является:
- ОПК-8.3 Демонстрирует специальные научные знания в т.ч. в предметной области
- **1.4 Перечень планируемых результатов обучения**. В результате изучения дисциплины студент должен
 - **-** знать:
 - Аксиоматическое построение числовых систем;
 - Понятие минимального расширения при переходе от одной системы к другой;
 - Изоморфизм различных моделей одной и той же системы.

уметь:

- Обосновывать числовые законы, используемые без доказательства в школьном курсе математики.
- Строить модели числовых систем.

владеть:

- навыками решения типовых задач.
- **1.5 Общая трудоемкость дисциплины** «Числовые системы» составляет 3 зачетных единиц (далее -3E) (108 часов):

1.6 Объем дисциплины и виды учебной деятельности

Объем дисциплины и виды учебной деятельности (заочная форма обучения)

Вид учебной работы	Всего часов	Семестр 7
Общая трудоемкость	108	108
Аудиторные занятия	16	16
Лекции	6	6
Практические занятия	10	10
Самостоятельная работа	88	88
Вид итогового контроля	4	зачёт

2 УЧЕБНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

2.1 Заочная форма обучения

	Наименование Всего		Аудиторі	Самостоя-	
№	паименование тем (разделов)	часов	Лекции	Практические занятия	тельная работа
1.	Тема 1. Аксиоматическая теория натуральных чисел	14	2	2	10
2.	Тема 2. Упорядоченные множества и системы. Аксиоматическая теория целых чисел	14	2	2	10
3.	Тема 3. Аксиоматическая теория рациональных чисел	16	-	2	14
4.	Тема 4.Последовательности в нормированных полях	10	-	-	10
5.	Тема 5. Аксиоматическая теория действительных чисел	16	-	2	14
6.	Тема 6. Аксиоматическая теория комплексных чисел	20	-	-	20
7.	Тема 7. Линейные алгебры над полями	14	2	2	10
	Зачёт	4			
ИТ	ОГО	72	6	10	88

Интерактивное обучение по дисциплине

№	Наименование тем (разделов)	Вид занятия	Форма интерактивного занятия	Кол- во часов
1.	Тема 2. Упорядоченные множества и системы. Аксиоматическая теория целых чисел	пр	работа в малых группах	2
2.	Тема 5. Аксиоматическая теория действительных чисел	пр	работа в малых группах	2
3.	Тема 7. Линейные алгебры над полями	пр	работа в малых группах	2
ИТ	ОГО			6

1. Аксиоматическая теория натуральных чисел

Формулировка аксиоматической теории натуральных чисел. Свойства сложения и умножения натуральных чисел. Теоремы, подготавливающие введение порядка на N. Определение и свойства неравенств на N. Теорема о существовании наименьшего и наибольшего элементов в подмножествах натуральных чисел. Бесконечность множества натуральных чисел. Натуральные кратные и степени элементов полугруппы, их свойства. Категоричность аксиоматической теории натуральных чисел. Аксиоматика Пеано. Определение, существование и единственность суммы и произведения. Эквивалентность двух формулировок аксиоматической теории натуральных чисел. Независимость аксиом Пеано. Независимость аксиомы индукции, и ее роль в арифметике. Эквивалентность аксиомы индукции и теоремы о наименьшем элементе.

2. Упорядоченные множества и системы

Определение упорядоченного множества, упорядоченной группы, упорядоченного кольца. Свойства элементов линейно упорядоченного кольца. Критерий существования, однозначности и продолжения порядка в кольце. Примеры колец с неоднозначным порядком, с неархимедовым порядком. Теорема о единственности порядка в полукольце натуральных чисел. Аксиоматическая теория целых чисел. Первичные термины и аксиомы. Свойства целых чисел. Теорема о порядке на Z. Непротиворечивость и категоричность аксиоматической теории целых чисел.

3. Аксиоматическая теория рациональных чисел

Первичные термины и аксиомы. Свойства рациональных чисел. Теорема о порядке поля рациональных чисел. Теорема о существовании в линейно строго упорядоченном поле подполя, изоморфного полю рациональных чисел. Плотность поля рациональных чисел. Непротиворечивость и категоричность аксиоматической теории рациональных чисел.

4. Последовательности в нормированных полях

Определение и свойства нормы. Примеры нормированных полей. Свойства эквивалентности, фундаментальности, сходимости, ограниченности последовательностей нормированного поля, линейно упорядоченного поля, архимедовски линейно упорядоченного поля.

5. Аксиоматическая теория действительных чисел

Первичные термины и аксиомы. Свойства действительных чисел: действительное число есть предел последовательности рациональных чисел, существование корня натуральной степени из положительного действительного числа, единственность порядка в R, теорема о двойной последовательности, теорема о сечении. Непротиворечивость и категоричность аксиоматической теории действительных чисел. Понятие о р-адических числах.

6. Аксиоматическая теория комплексных чисел

Первичные термины и аксиомы. Свойства комплексных чисел. Теоремы о порядке на С. Непротиворечивость и категоричность аксиоматической теории комплексных чисел.

7. Линейные алгебры над полями

Линейные алгебры над полем. Базис и ранг линейной алгебры. Линейные алгебры конечного ранга над полем комплексных чисел. Линейные алгебры конечного ранга над полем действительных чисел. Теорема Фробениуса. Понятие о теореме Кэли.

4 МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ (УКАЗАНИЯ) ДЛЯ СТУДЕНТОВ ПО ИЗУЧЕНИЮ ДИСЦИПЛИНЫ

4.1 Общие методические рекомендации

Согласно учебного плана организация учебной деятельности по дисциплине «Числовые системы» предусматривает следующие формы: лекция, практическое занятие, само-

стоятельная работа, контрольная работа. Успешное изучение курса требует от студентов посещения лекций, активной работы на семинарах, выполнения всех учебных заданий преподавателя, ознакомления основной и дополнительной литературой.

4.2 Методические рекомендации по подготовке к лекциям

Курс лекций строится на основе четких понятий и формулировок, так как только при таком походе студенты приобретают культуру абстрактного мышления, необходимую для высококвалифицированного специалиста в любой отрасли знаний, а также на разборе типовых задач и алгоритмов их решения. Необходимо избегать механического записывания текста лекции без осмысливания его содержания.

4.3. Методические рекомендации по подготовке к практическим занятиям

При подготовке к практическим занятиям студент должен просмотреть конспекты лекций, рекомендованную литературу по данной теме; подготовиться к ответу на контрольные вопросы.

4.4. Методические указания к самостоятельной работе студентов

Для успешного усвоения дисциплины необходима правильная организация самостоятельной работы студентов. Эта работа должна содержать:

- -регулярную (еженедельную) проработку теоретического материала по конспектам лекций и рекомендованной литературе;
- -регулярную (еженедельную) подготовку к практическим занятиям, в том числе выполнение домашних заданий;
 - -подготовка к контрольной работе и ее успешное выполнение.

В качестве образца решения задач следует брать те решения, которые приводились преподавателем на лекциях или выполнялись на практических занятиях. При появлении каких-либо вопросов следует обращаться к преподавателю в часы его консультаций. Критерием качества усвоения знаний могут служить аттестационные оценки по дисциплине и текущие оценки, выставляемые преподавателем в течение семестра. При подготовке к контрольной работе по определенному разделу дисциплины полезно выписать отдельно все формулы, относящиеся к данному разделу, и все используемые в них обозначения. Также при подготовке к контрольной работе следует просмотреть конспект практических занятий и выделить в практические задания, относящиеся к данному разделу. Если задания на какие — то темы не были разобраны на занятиях (или решения которых оказались не понятыми), следует обратиться к учебной литературе, рекомендованной преподавателем в качестве источника сведений. Полезно при подготовке к контрольной работе самостоятельно решить несколько типичных заданий по соответствующему разделу. В каждом семестре предусматривается проведение одной контрольной работы.

В течение преподавания дисциплины «Числовые системы» в качестве форм текущей аттестации студентов используются такие формы как, компьютерный тест (СЭО БГПУ).

4.5. Методические указания к зачету

Рабочая программа содержит программу экзаменов и зачетов, которая позволит наиболее эффективно организовать подготовку к ним. Это процесс, в течение которого проверяются полученные знания за курс (семестр): уровень теоретических знаний; развитие творческого мышления; навыки самостоятельной работы; умение синтезировать полученные знания и применять их в решение практических задач.

Учебно-методическое обеспечение самостоятельной работы студентов по дисциплине

№	Наименование раздела (темы)	Формы/виды самостоятельной работы	Количество часов, в соответствии с учебно-
---	--------------------------------	---	--

			тематическим планом
1.	Тема 1. Аксиоматическая теория натуральных чисел	Подготовка к семинарским занятиям.	10
2.	Тема 2. Упорядоченные множества и системы. Аксиоматическая теория целых чисел	Подготовка к семинарским занятиям.	10
3.	Тема 3. Аксиоматическая теория рациональных чисел	Контрольная работа (пись- менный контроль)	14
4.	Тема 4.Последовательности в нормированных полях	Подготовка к семинарским занятиям.	10
5.	Тема 5. Аксиоматическая теория действительных чисел	Контрольная работа (пись- менный контроль)	14
6.	Тема 6. Аксиоматическая теория комплексных чисел	Подготовка к семинарским занятиям.	20
7.	Тема 7. Линейные алгебры над по- лями	Подготовка к семинарским занятиям.	10
	итого		88

5 ПРАКТИКУМ ПО ДИСЦИПЛИНЕ

	Наименование	Всего	Аудиторі	ные занятия	Самостоя-
№	таименование тем (разделов)	часов	Лекции	Практические занятия	тельная работа
8.	Тема 1. Аксиоматическая теория натуральных чисел	14	2	2	10
9.	Тема 2. Упорядоченные множества и системы. Аксиоматическая теория целых чисел	14	2	2	10
10.	Тема 3. Аксиоматическая теория рациональных чисел	16	-	2	14
11.	Тема 4.Последовательности в нормированных полях	10	-	-	10
12.	Тема 5. Аксиоматическая теория действительных чисел	16	-	2	14
13.	Тема 6. Аксиоматическая теория комплексных чисел	20	-	-	20
14.	Тема 7. Линейные алгебры над полями	14	2	2	10
	Зачёт				
ИТ	ОГО	72	6	10	88

Тема 1. Аксиоматическая теория натуральных чисел

Занятие №1 (2 часа)

Формулировка аксиоматической теории натуральных чисел. Свойства сложения и умножения натуральных чисел. Теоремы, подготавливающие введение порядка на N. Опреде-

ление и свойства неравенств на N. Теорема о существовании наименьшего и наибольшего элементов в подмножествах натуральных чисел. Бесконечность множества натуральных чисел. Натуральные кратные и степени элементов полугруппы, их свойства.

Категоричность аксиоматической теории натуральных чисел. Определение, существование и единственность суммы и произведения. Аксиоматика Пеано. Эквивалентность двух формулировок аксиоматической теории натуральных чисел. Независимость аксиом Пеано.

Независимость аксиомы индукции и ее роль в арифметике. Эквивалентность аксиомы индукции и теоремы о наименьшем элементе.

Литература:

- 1. Смолин, Ю.Н. Числовые системы / Ю.Н. Смолин. Учеб. Пособие. М.: Наука, 2009.-112 с.
- 2. Ларин, С.В. Числовые системы / С.В. Ларин. Учеб. Пособие для студ. пед. вузов. М.: Издательский центр «Академия», 2001. 160 с.
- 3. Кириллов, A. A. Что такое число? / A.A. Кириллов. M.: Наука, 1993, 79 c.

Тема 2. Упорядоченные множества и системы. Аксиоматическая теория целых чисел Занятие №2

Определение упорядоченного множества, упорядоченной группы,

упорядоченного кольца. Свойства элементов линейно упорядоченного кольца.

Критерий существования, однозначности и продолжения порядка в кольце.

Примеры колец с неоднозначным порядком, с неархимедовым порядком.

Теорема о единственности порядка в полукольце натуральных чисел.

Первичные термины и аксиомы. Свойства целых чисел. Теорема о порядке на Z.

Непротиворечивость и категоричность аксиоматической теории целых чисел.

Литература:

- 1. Молин, Ф. Э. Числовые системы / Ф. Э. Молин. Новосибирск: Наука, 1985. 123 с. 1938. 186 с.
- 2. Кириллов, А. А. Что такое число? / А.А. Кириллов. М.: Наука, 1993, 79 с.

Тема 3. Аксиоматическая теория рациональных чисел Тема 4. Последовательности в нормированных полях

Определение и свойства нормы.

Свойства эквивалентности, фундаментальности, сходимости, ограниченности последовательностей нормированного поля, линейно упорядоченного поля, архимедовски линейно упорядоченного поля.

Занятие №3 (2 часа)

Плотность поля рациональных чисел.

Непротиворечивость и категоричность аксиоматической теории рациональных чисел.

Литература:

- 1. Ларин, С.В. Числовые системы / С.В. Ларин. Учеб. Пособие для студ. пед. вузов. М.: Издательский центр «Академия», 2001. 160 с.
- 2. Молин, Ф. Э. Числовые системы / Ф. Э. Молин. Новосибирск: Hayka, 1985. 123 с.
- 3. Нечаев, В.И. Числовые системы / В.И Нечаев. М.: Просвещение, 1975. –200 с.
- 4. Смолин, Ю.Н. Числовые системы / Ю.Н. Смолин. Учеб. Пособие. М.: Наука, 2009. 112 с.
- 5. Феферман, С. Числовые системы. Основания алгебры и анализа. / С. Феферман. М.: Наука, 1971. 440 с.

Тема 5. Аксиоматическая теория действительных чисел Тема 6. Аксиоматическая теория комплексных чисел

Первичные термины и аксиомы.

Свойства комплексных чисел.

Теоремы о порядке на С.

Непротиворечивость и категоричность аксиоматической теории комплексных чисел

Занятие №4 (2 часа)

Первичные термины и аксиомы.

Свойства действительных чисел: действительное число есть предел последовательности рациональных чисел, существование корня натуральной степени из положительного действительного числа, единственность порядка в R, теорема о двойной последовательности, теорема о сечении. Непротиворечивость и категоричность аксиоматической теории действительных чисел. Понятие о р-адических числах

Литература:

- 1. Ларин, С.В. Числовые системы / С.В. Ларин. Учеб. Пособие для студ. пед. вузов. М.: Издательский центр «Академия», 2001. 160 с.
- 2. Молин, Ф. Э. Числовые системы / Ф. Э. Молин. Новосибирск: Наука, 1985. 123 с.
- 3. Смолин, Ю.Н. Числовые системы / Ю.Н. Смолин. Учеб. Пособие. М.: Наука, 2009.-112 с.
- 4. Нечаев, В.И. Числовые системы / В.И Нечаев. М.: Просвещение, 1975. –200 с.
- 5. Кириллов, A. A. Что такое число? / A.A. Кириллов. M.: Hayka, 1993, 79 c.

Тема 7. Линейные алгебры над полями

Занятие №5 (2 часа)

Линейные алгебры над полем. Базис и ранг линейной алгебры. Линейные алгебры конечного ранга над полем комплексных чисел. Линейные алгебры конечного ранга над полем действительных чисел. Теорема Фробениуса

Литература:

- 1. Кантор, И.Л. Солодовников А.С. Гиперкомплексные числа / И.Л. Кантор. М.: Наука, 1973. 144 с
- 2. Понтрягин, Л.С. Обобщения чисел / Л.С. Понтрягин М.: Наука, 1986, с.177.

6 ДИДАКТИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ КОНТРОЛЯ (САМОКОНТРОЛЯ) УСВОЕННОГО МАТЕРИАЛА

6.1 Оценочные средства, показатели и критерии оценивания компетенций

Индекс компе- тенции	Оценочное средство	Показатели оценивания	Критерии оценивания сформированности компетенций
УК-1, ПК-2, ОПК-8	Письменная контрольная работа	Низкий (неудовлетворительно)	Контрольная работа не засчитывается, если студент: 1) допустил число ошибок и недочетов, превосходящее норму, при которой может быть достигнут пороговый показатель; 2) или если правильно выполнил менее половины работы.
		Пороговый (удовлетворительно)	Студент правильно выполнил не менее половины работы или допустил: 1) не более двух грубых ошибок;

	 2) или не более одной грубой и одной негрубой ошибки и одного недочета; 3) или не более двух-трех негрубых ошибок; 4) или одной негрубой ошибки и трех недочетов; 5)или при отсутствии ошибок, но при
	наличии четырех-пяти недочетов.
Базовый (хорошо)	Студент выполнил работу полностью, но допустил в ней: 1) не более одной негрубой ошибки и одного недочета; 2) или не более двух недочетов.
Высокий (отлично)	Студент 1) выполнил работу без ошибок и недочетов; 2) допустил не более одного недочета.

6.2 Промежуточная аттестация студентов по дисциплине

Промежуточная аттестация является проверкой всех знаний, навыков и умений студентов, приобретённых в процессе изучения дисциплины. Формой промежуточной аттестации по дисциплине является зачёт/экзамен.

Для оценивания результатов освоения дисциплины применяется следующие критерии оценивания.

Промежуточная аттестация является проверкой всех знаний, навыков и умений студентов, приобретённых в процессе изучения дисциплины. Формой промежуточной аттестации по дисциплине является зачёт, экзамен.

Для оценивания результатов освоения дисциплины применяется следующие критерии оценивания.

Критерии оценивания устного ответа на практическом занятии, семинаре

Развернутый ответ студента должен представлять собой связное, логически последовательное сообщение на заданную тему, показывать его умение применять определения, правила в конкретных случаях.

Критерии оценивания:

- 1) полноту и правильность ответа;
- 2) степень осознанности, понимания изученного;
- 3) языковое оформление ответа.

Оценка «отлично» ставится, если:

- 1) студент полно излагает материал, дает правильное определение основных понятий;
- 2) обнаруживает понимание материала, может обосновать свои суждения, применить знания на практике, привести необходимые примеры не только из учебника, но и самостоятельно составленные;
- 3) излагает материал последовательно и правильно с точки зрения норм литературного языка.

«хорошо» – студент дает ответ, удовлетворяющий тем же требованиям, что и для отметки «5», но допускает 1–2 ошибки, которые сам же исправляет, и 1–2 недочета в последовательности и языковом оформлении излагаемого.

«удовлетворительно» – студент обнаруживает знание и понимание основных положений данной темы, но:

- 1) излагает материал неполно и допускает неточности в определении понятий или формулировке правил;
- 2) не умеет достаточно глубоко и доказательно обосновать свои суждения и привести свои примеры;
- 3) излагает материал непоследовательно и допускает ошибки в языковом оформлении излагаемого.

Оценка «неудовлетворительно» ставится, если студент обнаруживает незнание большей части соответствующего вопроса, допускает ошибки в формулировке определений и правил, искажающие их смысл, беспорядочно и неуверенно излагает материал. Оценка «2» отмечает такие недостатки в подготовке, которые являются серьезным препятствием к успешному овладению последующим материалом.

Критерии оценивания контрольных работ

Оценка «отлично» ставится, если студент:

- 1. выполнил работу без ошибок и недочетов;
- 2. допустил не более одного недочета.

Оценка «хорошо» ставится, если студент выполнил работу полностью, но допустил в ней:

- 1. не более одной негрубой ошибки и одного недочета;
- 2. или не более двух недочетов.

Оценка «удовлетворительно» ставится, если студент правильно выполнил не менее половины работы или допустил:

- 1. не более двух грубых ошибок;
- 2. или не более одной грубой и одной негрубой ошибки и одного недочета;
- 3. или не более двух-трех негрубых ошибок;
- 4. или одной негрубой ошибки и трех недочетов;
- 5. или при отсутствии ошибок, но при наличии четырех-пяти недочетов.

Оценка «неудовлетворительно» ставится, если студент:

- 1. допустил число ошибок и недочетов превосходящее норму, при которой может быть выставлена оценка «3»;
- 2. или если правильно выполнил менее половины работы.

Критерии оценивания на зачете

<u>Оценка «зачтено»</u> выставляется студенту, если:

- задания, размещенные в Электронной информационно-образовательной среде БГПУ выполнены на 60 и более процентов;
- он имеет посещаемость практических занятий не менее 60 процентов.
- Оценка «не зачтено» выставляется студенту, если:
- задания, размещенные в Электронной информационно-образовательной среде БГПУ выполнены менее чем на 60 процентов;
- он имеет посещаемость практических занятий менее 60 процентов (исключение составляют студенты, пропустившие занятия по уважительной причине: болезни,

участия в значимых для вуза мероприятиях, таких как участие в олимпиадах по профилю и т.п.).

6.3 Типовые контрольные задания или иные материалы, необходимые для оценки результатов освоения дисциплины

КОНТРОЛЬНАЯ РАБОТА

Вариант 1

1. Пусть $P_1=\left\{\left\langle m,n\right\rangle \middle|m,n\in N\right\}$. Определим на P_1 отношения \oplus , \otimes и \sim . Для любых элементов $\langle m,n\rangle,\langle k,l\rangle$ из P_1 :

$$\langle m, n \rangle \oplus \langle k, l \rangle = \langle m + k, n + l \rangle$$
$$\langle m, n \rangle \otimes \langle k, l \rangle = \langle mk + nl, ml + nk \rangle$$
$$\langle m, n \rangle \sim \langle k, l \rangle \Leftrightarrow m + l = k + n$$

Являются ли ⊕ и ⊗ на Р₁ алгебраическими операциями?

Каков ранг каждой из этих операций? Выполняются ли ассоциативность, коммутативность каждой бинарной операции?

Дистрибутивно ли \otimes относительно \oplus ?

Существуют ли нейтральные элементы относительно каждой из операций? Сократимы ли эти операции? Является ли система $\langle P_1, \oplus, \otimes \rangle$ - полукольцом? кольцом? телом?

Рефлексивно ли, транзитивно ли, симметрично ли отношение " \sim "? Является ли оно отношением порядка? эквивалентности? Монотонно ли это отношение относительно \oplus и \otimes ?

2. Пусть
$$P_2=\left\{\left\langle a,n\right\rangle\middle|a\in Z,n\in N\right\}$$
. Если $\left\langle a,n\right\rangle,\left\langle b,m\right\rangle\in P_2$, то
$$\left\langle a,n\right\rangle\oplus\left\langle b,m\right\rangle=\left\langle am+bn,mn\right\rangle$$

$$\left\langle a,n\right\rangle\otimes\left\langle b,m\right\rangle=\left\langle ab,mn\right\rangle$$

Являются ли системы $\langle P_2; \oplus \rangle, \langle P_2; \otimes \rangle$ -полугруппами? группами?

Коммутативны ли \oplus и \otimes ? Является ли система $\langle P_2; \oplus, \otimes \rangle$ полукольцом? полем?

Определим на P_2 отношение ω : $\langle a, n \rangle \omega \langle b, n \rangle \Leftrightarrow am = bn$.

Каков ранг отношения ω ? Является ли отношение ω отношением эквивалентности? Монотонно ли оно относительно \oplus и относительно \otimes ?

3. Пусть $P_3=\left\{\left\langle a,b\right\rangle\middle|a,b\in R\right\}$. Определим \oplus и \otimes на P_3 следующими соотношениями:

$$\langle a, b \rangle \oplus \langle c, d \rangle = \langle a + c, b + d \rangle$$
$$\langle a, b \rangle \otimes \langle c, d \rangle = \langle ac - bd, ad + bc \rangle$$

- а) Проверить, являются ли системы $\langle P_3; \oplus \rangle, \langle P_3; \otimes \rangle$ полугруппами. Коммутативны ли они?
- b) Найти θ , e элементы P_3 такие, чтобы для любого элемента α , принадлежащего P_3 , выполнялись равенства: $\alpha \oplus \theta = \theta \oplus \alpha = \alpha$, $\alpha \otimes e = e \otimes \alpha = \alpha$.
- с) Решить на P_3 уравнение: $x^2 \oplus e = \theta$.
- d) Является ли система $\langle P_3; \oplus, \otimes \rangle$ кольцом? полем?
- е) Доказать, что для любых элементов $\alpha \neq \theta$, β из P_3 уравнение $\alpha \otimes x = \beta$ разрешимо в P_3 .

4. Матрицу вида, $\begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix}$, где $\alpha,\beta\in C$ и если $\alpha=a+bi$, то $\overline{\alpha}=a-bi$, назовем кватернионом.

Пусть $K = \left\{ \begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix} \middle| \alpha, \beta \in C \right\}$. Доказать, что система $\left\langle K; +, \cdot \right\rangle$ - кольцо. Коммутативно ли оно? Является ли кольцо $\left\langle K; +, \cdot \right\rangle$ телом? полем? Доказать.

Решить на K уравнение: $\begin{pmatrix} 1+i & 5-i \\ -5-i & 1-i \end{pmatrix} \cdot X = \begin{pmatrix} 2 & i \\ i & 2 \end{pmatrix}$.

Пусть
$$e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, $e_2 = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$, $e_3 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $e_4 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$.

Доказать, что для любого $q \in K$ существует единственная четверка $\langle r_1, r_2, r_3, r_4 \rangle \in R^4$ такая, что $q = r_1e_1 + r_2e_2 + r_3e_3 + r_4e_4$.

Составить таблицу умножения элементов e_1 , e_2 , e_3 , e_4 .

5. Пусть $\langle K;+,\cdot \rangle$ - тело, e1, e2, e3, e4 — элементы K, обладающие свойствами : для любого α из K $\alpha \cdot$ e1 = e1 \cdot $\alpha = \alpha$;

$$e3 \cdot e2 = - e2 \cdot e3 = - e4$$
;
 $e22 = e32 = - e1$

Составить таблицу умножения элементов e_1 , e_2 , e_3 , e_4 . Проверить, совпадает ли она с таблицей задачи 4.

Вариант 2

1. Пусть θ - любой комплексный корень уравнения x3 = 2,

$$Q(\theta) = \left\{ a_0 + a_1 \theta + a_2 \theta^2 \middle| a_0, a_1, a_2 \in Q \right\}$$

Показать, что $Q(\theta) = \langle Q(\theta); +, \cdot, 0, 1 \rangle$ -поле, если $+, \cdot -$ сложение и умножение комплексных чисел.

$$2. \quad \Pi \text{усть} \quad F = \left\{ \left\{ a_n \right\}_n \middle| \left\{ a_n \right\}_n \colon N \to Q, \left\{ a_n \right\}_n - \varphi \text{ундаментальная} \right\} \\ \left\{ a_n \right\}_n \oplus \left\{ b_n \right\}_n = \left\{ a_n + b_n \right\}_n \\ \left\{ a_n \right\}_n \otimes \left\{ b_n \right\}_n = \left\{ a_n \cdot b_n \right\}_n$$

Является ли система $\langle F; \oplus, \otimes \rangle$ полукольцом? кольцом? телом? полем? Доказать. Существуют ли нейтральные элементы относительно каждой из операций и если да, то какие? Будем говорить, что две последовательности $\left\{a_n\right\}_n, \left\{b_n\right\}_n$ из F находятся в отношении "~", если последовательность $\{a_n - b_n\}_n$ — нулевая. Является ли отношение "~" эквивалентностью?

Монотонно ли это отношение относительно + и \cdot ?

3. Определим на P_3 отношение ">". Пусть $\langle a,b \rangle, \langle a',b' \rangle \in P_3$. $\langle a,b \rangle > \langle a',b' \rangle \Leftrightarrow (a>a') \vee (a=a'\&b>b')$

Является ли отношение >, определенное на P_3 , эквивалентностью? порядком? Монотонно ли это отношение относительно \oplus , \otimes , введенных в задаче 3? Если > порядок, то строг ли он? нестрог ли он?

4.
$$\Pi y \in N' = \{ < n, x > | n \in N, x \in (0, 1) \}; e = < 1, 0 >,$$

$$\begin{split} \left\langle n,x\right\rangle \oplus \left\langle m,y\right\rangle &= \begin{cases} \left\langle n+m,x\right\rangle, & xy=0\\ \left\langle m,l\right\rangle, & xy=1 \end{cases}\\ \left\langle n,x\right\rangle \otimes \left\langle m,y\right\rangle &= \begin{cases} \left\langle nm,y\right\rangle, & x=0\\ \left\langle n,l\right\rangle, & x=1 \end{cases} \end{split}$$

Проверить выполнимость каждой аксиомы аксиоматической теории натуральных чисел в системе $\langle N'; \oplus, \otimes, e \rangle$ и выяснить, коммутативны ли, ассоциативны ли \oplus , \otimes . Дистрибутивно ли \otimes относительно \oplus ? Является ли система $\langle N'; \oplus, \otimes, e \rangle$ интерпретацией аксиоматической теории натуральных чисел? Моделью?

$$N' = \left\{ \frac{a}{b} \middle| a, b \in N, a \ge b \right\} \quad e = \frac{1}{1}, \alpha \oplus \beta = \alpha + \beta, \alpha \otimes \beta = \alpha \cdot \beta$$
5. Пусть

Является ли интерпретация $\langle N'; \oplus, \otimes, e \rangle$ моделью аксиоматической теории натуральных чисел?

Доказать, что если $\alpha \in N'$ и $\alpha \neq e$, то существуют $\beta, \gamma \in N'$ такие, что $\alpha = \beta \cdot \gamma$ и при этом $\beta \neq e, \gamma \neq e$.

Контрольная работа №2

Вариант 1

- 1. Решить на множестве натуральных чисел:
 - a) $x^2 = 2$; b) $x^3 = 3$; c) $x^2 = x$; d) $3a = a^2$; e) xy = 1; f) xy = x.
- 2. На множестве натуральных чисел найти все решения каждого из уравнений:
 - a) 4x = 4y + 1; b) a + b = 2; c) 2n + 1 = 2x; d) $x^2 + y^2 = 5$.
- 3. Вычислить: 2+3; 3+5; 2.3; 3.7.
- 4. Пусть a, b, n ∈ N. Доказать справедливость следующих утверждений:
 - 1. $a + a = b + b \implies a = b$,
 - 2. $a > 2 \Rightarrow \exists (k \in \mathbb{N}) \ a = 3k \lor a = 3k + 1 \lor a = 3k + 2$,
 - 3. $\exists (x \in N) (a+1) \cdot a = 2x$,
 - 4. $n > 1 \Rightarrow \exists (x \in N) \ n = 2x \lor n = 2x + 1$,
 - 5. $n \neq 1 \Rightarrow \exists (x \in N) (n-1) \cdot n = x + x$,
 - 6. $n \neq 1 \Rightarrow \exists (x \in N) (n-1) \cdot n \cdot (n+1) = 3x$.
- 5. Пусть a, b, n ∈ N. Доказать справедливость следующих утверждений:
 - 1. $a > b \Rightarrow a^n > b^n$,
 - $2. \qquad a^n > b^n \Longrightarrow a > b,$
 - 3. ab < a
 - 4. $n \neq 1, n \neq 2 \Rightarrow 2^n > 2^n \cdot n + 1.$

Вариант 2

- 1. Доказать, что для любых натуральных a, b, n, m справедливы равенств
 - a) an . am = an+ m, b) (an)m = anm, c) $(a \cdot b)n = an$. bn a:
- 2. Пусть a, b, n, m натуральные числа. Доказать, что справедливы следующие свойства кратных: a) (nm) * a = n * (m * a),

b)
$$(n + m) * a = n * a + m * a$$
,
c) $n * (a + b) = n * a + n * b$.

3. Сформулировать и доказать условия существования и совпадения левых и правых частей равенств на множестве натуральных чисел:

a)
$$(a + b) - c = a + (b - c)$$
, b) $(a \cdot b) : c = a \cdot (b : c)$;

- 4. Пусть a, b, c, d \in N. При условии существования в N разностей a-b, c-d доказать: a > c, b < d \Rightarrow a b > c d,
- 5. Пусть a, b, c, d \in N. Доказать, что если в N существуют частные a:b, c:d и d < b, a < c, то a : b < c : d.

6.3.3 Вопросы к зачету

- 1. Аксиоматическая теория натуральных чисел. Сложение и его свойства.
- 2. Аксиоматическая теория натуральных чисел. Умножение и его свойства.
- 3. Теоремы, подготавливающие введение порядка на множестве натуральных чисел. Теорема о трихотомии.
- 4. Определение и свойства отношения "больше" на множестве натуральных чисел.
- 5. Теорема о единственности линейного и строгого порядка в полукольце натуральных чисел.
- 6. Теорема Архимеда и теорема о дискретности на множестве натуральных чисел.
- 7. Аксиоматическая теория натуральных чисел. Теорема о наименьшем элементе.
- 8. Аксиоматическая теория натуральных чисел. Теорема о наибольшем элементе.
- 9. Конечные множества и их свойства. Бесконечность множества натуральных чисел.
- 10. Разность и частное на множестве натуральных чисел.
- 11. Категоричность аксиоматической теории натуральных чисел.
- 12. Независимость аксиомы индукции и ее роль в арифметике.
- 13. Аксиоматика Пеано. Эквивалентность двух формулировок аксиоматической теории натуральных чисел.
- 14. Система аксиом Пеано. Введение сложения и умножения на основе аксиоматики Пеано.
- 15. Независимость аксиом системы Пеано.
- 16. Свойства упорядоченных полугрупп.
- 17. Теорема о натуральных кратных ненулевого элемента линейно строго упорядоченной полугруппы.
- 18. Свойства упорядоченных полуколец.
- 19. Свойства упорядоченных колец.
- 20. Теорема о плотности архимедовски линейно строго упорядоченного тела.
- 21. Критерий существования линейного и строгого порядка кольца.
- 22. Критерий однозначности линейного и строгого порядка кольца.
- 23. Критерий продолжения линейного и строгого порядка кольца.
- 24. Аксиоматическая теория целых чисел. Свойства целых чисел.
- 25. Теоремы о порядке кольца целых чисел.
- 26. Категоричность аксиоматической теории целых чисел.
- 27. Непротиворечивость аксиоматической теории целых чисел.
- 28. Аксиоматическая теория рациональных чисел. Свойства рациональных чисел.
- 29. Теоремы о порядке поля рациональных чисел.
- 30. Непротиворечивость аксиоматической теории рациональных чисел.
- 31. Категоричность аксиоматической теории рациональных чисел.
- 32. Теорема о существовании подполя линейно строго упорядоченного поля, изоморфного полю рациональных чисел.
- 33. Нормированные поля. Примеры норм. Свойства нормы.
- 34. Последовательности в нормированных полях. Теоремы об эквивалентных последовательностях.
- 35. Последовательности в нормированных полях. Теоремы о фундаментальных и сходящихся последовательностях.
- 36. Последовательности в нормированных полях. Теорема о возрастающей и ограниченной последовательности.
- 37. Свойства последовательностей архимедовски упорядоченного поля.
- 38. Аксиоматическая теория действительных чисел. Теорема о существовании корня.

- 39. Аксиоматическая теория действительных чисел. Теорема о сечении.
- 40. Аксиоматическая теория действительных чисел. Теорема о порядке поля действительных чисел. Теорема о двойной последовательности.
- 41. Категоричность аксиоматической теории действительных чисел.
- 42. Непротиворечивость аксиоматической теории действительных чисел.
- 43. Аксиоматическая теория комплексных чисел. Свойства комплексных чисел.
- 44. Категоричность аксиоматической теории комплексных чисел.
- 45. Непротиворечивость аксиоматической теории комплексных чисел.
- 46. Линейные алгебры конечного ранга над полем комплексных чисел.
- 47. Теорема Фробениуса о линейных алгебрах конечного ранга над полем действительных чисел.

7 ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ В ПРОЦЕССЕ ОБУЧЕНИЯ

Информационные технологии — обучение в электронной образовательной среде с целью расширения доступа к образовательным ресурсам, увеличения контактного взаимодействия с преподавателем, построения индивидуальных траекторий подготовки, объективного контроля и мониторинга знаний студентов.

В образовательном процессе по дисциплине используются следующие информационноонные технологии, являющиеся компонентами Электронной информационнообразовательной среды БГПУ:

- Официальный сайт БГПУ;
- Система электронного обучения ФГБОУ ВО «БГПУ»;
- Мультимедийное сопровождение лекций и практических занятий.

8 ОСОБЕННОСТИ ИЗУЧЕНИЯ ДИСЦИПЛИНЫ ИНВАЛИДАМИ И ЛИЦАМИ С ОГРАНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ

При обучении лиц с ограниченными возможностями здоровья применяются адаптивные образовательные технологии в соответствии с условиями, изложенными в раздел «Особенности организации образовательного процесса по образовательным программам для инвалидов и лиц с ограниченными возможностями здоровья» основной образовательной программы (использование специальных учебных пособий и дидактических материалов, специальных технических средств обучения коллективного и индивидуального пользования, предоставление услуг ассистента (помощника), оказывающего обучающимся необходимую техническую помощь и т.п.) с учётом индивидуальных особенностей обучающихся.

9 СПИСОК ЛИТЕРАТУРЫ И ИНФОРМАЦИОННЫХ РЕСУРСОВ

9.1 Литература

- 1. Смолин, Ю.Н. Числовые системы / Ю.Н. Смолин. Учеб. Пособие. М.: Наука, 2009.-112 с. (12 экз.)
- 2. Ларин, С.В. Числовые системы / С.В. Ларин. Учеб. Пособие для студ. пед. вузов. М.: Издательский центр «Академия», 2001. 160 с. (32 экз.)
- 3. Нечаев, В.И. Числовые системы / В.И. Нечаев. М.: Просвещение, 1975. –200 с. (10 экз.)

- 4. Феферман, С. Числовые системы. Основания алгебры и анализа. / С. Феферман. М.: Наука, 1971. 440 с. (3 экз.)
- 5. Блох, А.Ш. Числовые системы / А.Ш. Блох. Учеб. Пособие для пед. ин-тов по мат. спец. Минск: Вышейш. школа, 1982. 160 с. (12 экз.)
- 6. Кантор, И.Л. Солодовников А.С. Гиперкомплексные числа / И.Л. Кантор. М.: Наука, 1973. 144 с. (5 экз.)
- 7. Понтрягин, Л.С. Обобщения чисел / Л.С. Понтрягин М.: Наука, 1986. –177 с. (3 экз.)
- 8. Белоновский, П.Д. Теоретическая арифметика / П.Д. Белоновский. М.: ГУПИ, 1938. 186 с. (3 экз.)

9.2 Базы данных и информационно-справочные системы

- 1. Открытый колледж. Математика Режим доступа: https://mathematics.ru/.
- 2. Математические этюды. Режим доступа: http://www.etudes.ru/.
- 3. Федеральный портал «Российское образование» -Режим доступа: http://www.edu.ru.
- 4. Информационная система «Единое окно доступа к образовательным ресурсам» Режим доступа: http://www.window.edu.ru.
- 5. Портал Электронная библиотека: диссертации-Режим доступа: http://diss.rsl.ru/?menu disscatalog.
- 6. Портал научной электронной библиотеки-Режим доступа: http://elibrary.ru/defaultx.asp.
- 7. Сайт Министерства науки и высшего образования РФ. Режим доступа: https://minobrnauki.gov.ru.
- 8. Сайт Федеральной службы по надзору в сфере образования и науки. Режим доступа: http://www.obrnadzor.gov.ru/ru.
 - 9. Сайт Министерства просвещения РФ. Режим доступа: https://edu.gov.ru.
 - 10. Сайт МЦНМО. Режим доступа: www.mccme.ru

9.3 Электронно-библиотечные ресурсы

- 1. ЭБС «Юрайт». Режим доступа: https://urait.ru
- 2. Полпред (обзор СМИ). Режим доступа: https://polpred.com/news

10 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА

Для проведения занятий лекционного и семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации используются аудитории, оснащённые учебной мебелью, аудиторной компьютером с установленным лицензионным специализированным программным обеспечением, с выходом в электронно-библиотечную систему и электронную информационно-образовательную среду БГПУ, мультимедийными проекторами, экспозиционными экранами.

Самостоятельная работа студентов организуется в аудиториях, оснащенных компьютерной техникой с выходом в электронную информационно-образовательную среду вуза, в специализированных лабораториях по дисциплине, а также в залах доступа в локальную сеть БГПУ.

Лицензионное программное обеспечение: операционные системы семейства Windows, Linux; офисные программы Microsoft office, Libreoffice, OpenOffice; Adobe Photoshop, Matlab, DrWeb antivirus и т.п.

Разработчик: Алутин П.П., кандидат физико-математических наук, доцент

11 ЛИСТ ИЗМЕНЕНИЙ И ДОПОЛНЕНИЙ

Утверждение изменений в рабочей программе дисциплины для реализации в 2020/2021 уч. г.

Рабочая программа дисциплины пересмотрена, обсуждена и одобрена для реализации в 2020/2021 уч. г. на заседании кафедры (протокол № 10 от «16» июня 2020 г.).

В рабочую программу дисциплины внесены следующие изменения и дополнения:

№ изменения: 1	
№ страницы с изменением: Титульный	
лист	
Исключить:	Включить:
МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО	МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОС-
ОБРАЗОВАНИЯ РФ	СИЙСКОЙ ФЕДЕРАЦИИ

Утверждение изменений в рабочей программе дисциплины для реализации в 2021/2022 уч. г.

Рабочая программа дисциплины пересмотрена, обсуждена и одобрена для реализации в 2021/2022 уч. г. на заседании кафедры (протокол № 8 от «21» апреля 2021 г.).

Утверждение изменений и дополнений в РПД для реализации в 2022/2023 уч. г.

РПД пересмотрена, обсуждена и одобрена для реализации в 2022/2023 учебном году на заседании кафедры физического и математического образования (протокол № 1 от 21 сентября 2022 г.).

В рабочую программу внесены следующие изменения и дополнения:

№ изменения: 2		
№ страницы с изменением: 16		
В Раздел 9 внесены изменения в список лите	ературы, в базы данных и информационно-	
справочные системы в электронно-библиотечные ресурсы Указаны ссылки обеспечи-		

В Раздел 9 внесены изменения в список литературы, в оазы данных и информационносправочные системы, в электронно-библиотечные ресурсы. Указаны ссылки, обеспечивающие доступ обучающимся к электронным учебным изданиям и электронным образовательным ресурсам с сайта ФГБОУ ВО «БГПУ».

Утверждение изменений и дополнений в РПД для реализации в 2023/2024 уч. г.

РПД обсуждена и одобрена для реализации в 2023/2024 уч. г. на заседании кафедры физического и математического образования (протокол № 10 от «21» июня 2023 г.). Утверждение изменений в рабочей программе дисциплины для реализации в 2024/2025 уч. г.

Рабочая программа дисциплины пересмотрена, обсуждена и одобрена для реализации в 2024/2025 уч. г. на заседании кафедры (протокол № 9 от «24» мая 2024 г.).