Документ подписан простой электронной подписью Информация о владельце:
ФИО: Щёкина вера витальевна
Должность: тектор
Дата подписания: 10.11.

Уникальный програ

a2232a55157e5765

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное бюджетное 53989410420336ffbf образовательное учреждение высшего образования «Благовещенский государственный педагогический университет»

ОСНОВНАЯ ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА Рабочая программа дисциплины

УТВЕРЖДАЮ - математического

И.о. Декана физико-математического факультета ФГБОУ ВО «БГПУ»

О.А. Днепровская «22» мая 2019 г.

Рабочая программа дисциплины

ОСНОВЫ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА

Направление подготовки 44.03.01 ПЕДАГОГИЧЕСКОЕ ОБРАЗОВАНИЕ

Профиль
«ИНФОРМАТИКА»
Профиль
«МАТЕМАТИКА»

Уровень высшего образования БАКАЛАВРИАТ

Принята на заседании кафедры информатики и МПИ (протокол № 9 от «15» мая 2019 г.)

СОДЕРЖАНИЕ

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА	3
УЧЕБНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ	4
СОДЕРЖАНИЕ ТЕМ (РАЗДЕЛОВ)	5
МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ (УКАЗАНИЯ) ДЛЯ СТУДЕНТОВ ПО ІЗУЧЕНИЮ ДИСЦИПЛИНЫ	6
ПРАКТИКУМ ПО ДИСЦИПЛИНЕ	9
ДИДАКТИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ КОНТРОЛЯ (САМОКОНТРОЛЯ) СВОЕННОГО МАТЕРИАЛА	12
перечень информационных технологий, используемых	15
ПРОЦЕССЕ ОБУЧЕНИЯ	15
ОСОБЕННОСТИ ИЗУЧЕНИЯ ДИСЦИПЛИНЫ ИНВАЛИДАМИ И ЛИЦАМИ ОГРАНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ	
СПИСОК ЛИТЕРАТУРЫ И ИНФОРМАЦИОННЫХ РЕСУРСОВ	16
0 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА	16
1 ЛИСТ ИЗМЕНЕНИЙ И ДОПОЛНЕНИЙ	18

1 ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

1.1 Цель дисциплины: формирование у студентов представления о ключевых направлениях исследований в области искусственного интеллекта, практических методах реализации ключевых алгоритмов в области логического, структурного, эволюционного подходов к разработке систем искусственного интеллекта.

1.2 Место дисциплины в структуре ООП

Дисциплина относится к обязательным дисциплинам вариативной части дисциплин (модулей) (Б1.В.08). Для освоения дисциплины используются знания, умения и виды деятельности, сформированные на предыдущем уровне образования в процессе изучения таких дисциплин как «Теория алгоритмов», «Дискретная математика», «Математическая логика», «Программирование», «Компьютерное моделирование» и других дисциплин, формирующих профессиональные компетенции, ответственные за способность к разработке и проектированию программного обеспечения.

1.3 Дисциплина направлена на формирование следующих компетенций:

- ПК-2. Способен осуществлять педагогическую деятельность по профильным предметам (дисциплинам, модулям) в рамках программ основного общего и среднего общего образования.
 - ПК-2.5 **Применяет** математический язык как универсальное средство построения модели явлений, процессов, для решения практических и экспериментальных задач, эмпирической проверки научных теорий.
 - ПК-2.3 Применяет методологии программирования и современные информационно-коммуникационные технологии для решения практических задач получения, хранения, обработки и передачи информации.
- **1.4 Перечень планируемых результатов обучения**. В результате студент должен

знать:

- основные направления исследований в области искусственного интеллекта;
- исторически значимые архитектуры нейроподобных сетей;
- способы оптимизации поиска решения методами с биологической и физической мотивацией;
- способы представления знаний и логического вывода;

уметь:

- реализовывать программно основные архитектуры нейроподобных сетей;
- применять генетические алгоритмы для решения широкого круга задач;
- проектировать и реализовывать простые статические экспертные системы;
 владеть:
- базовыми алгоритмами и техниками решения слабоформализованных задач.

1.5 Общая трудоемкость дисциплины «Основы искусственного интеллекта» составляет 3 зачетные единицы (108 часов).

Программа предусматривает изучение материала на лекциях и лабораторных занятиях. Предусмотрена самостоятельная работа студентов по темам. Проверка знаний осуществляется фронтально, индивидуально.

1.6 Объем дисциплины и виды учебной деятельности

Объем дисциплины и виды учебной деятельности (очная форма обучения)

Dug vyrobyoğ nobogy v	Всего часов	Семестры
Вид учебной работы	всего часов	10
Общая трудоемкость	108	108
Аудиторные занятия	54	54
Лекции	22	22
Лабораторные работы	32	32
Самостоятельная работа	54	54
Вид итогового контроля:		зачет

2 УЧЕБНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

Учебно-тематический план

	у чеоно-тематический план					
		Аудиторные занятия			Само-	
3.0	Наименование	Всего		Лабораторные	стоя-	
N₂	тем (разделов)	часов	Лекции	работы	тельная	
	тем (разделов)	писов	этекции	раооты		
	**				работа	
1.	Направления исследований					
	искусственного интеллекта	4	2		2	
2.	Перцептрон Розенблатта					
	1 1	14	4	4	6	
3.	Сети Хопфилда					
	-	12	2	4	6	
4.	Сети Хэмминга					
		8	2	2	4	
5.	Сети встречного распростра-					
	нения	12	2	4	6	
6.	Когнитрон и неокогнитрон					
	1	12	2	4	6	
7.	Генетические алгоритмы					
	-	14	2	4	8	
8.	Искусственная жизнь					
		10	2	4	4	
9.	Экспертные системы					
		14	2	4	8	
10	. Алгоритмы муравья					
		8	2	2	4	
И	ИТОГО 108 22 32 54					

Интерактивное обучение по дисциплине

№	Наименование тем (разделов)	Вид занятия	Форма интерактивного занятия	Кол- во часов
1.	Направления исследований искусственного интеллекта	Лк	Лекция- дискуссия	2
2.	Когнитрон и неокогнитрон	Лк	Проблемная лекция	2

3.	Генетические алгоритмы	Лк	Проблемная лекция	2
4.	Искусственная жизнь	Лк	Проблемная лекция	2
5.	Перцептрон Розенблатта	Лб	Проблемная ла- бораторная ра- бота	2
6.	Сети Хопфилда	Лб	Проблемная ла- бораторная ра- бота	2
7.	Сети встречного распространения	Лб	Проблемная ла- бораторная ра- бота	2
8.	Экспертные системы	Лб	Проблемная ла- бораторная ра- бота	2
ИТ	ΜΤΟΓΟ			

3 СОДЕРЖАНИЕ ТЕМ (РАЗДЕЛОВ)

Тема 1. Направления исследований искусственного интеллекта.

Исторически сформировавшиеся подходы к построению систем искусственного интеллекта: логический, структурный, эволюционный.

Тема 2. Перцептрон розенблатта.

Устройство биологического нейрона. Назначение и архитектура перцептрона. Алгоритм обучения однослойного перцептрона. Алгоритм обучения многослойного перцептрона. Программная реализация перцептрона, обучение базовым логическим функциям, функции «исключающее Или», распознавание цифр и букв.

Тема 3. Сети хопфилда.

Назначение и архитектура сети Хопфилда. Принципы локального обучения нейронов. Восстановление поврежденных и зашумленных образов. Алгоритм ассоциативного запоминания образов. Программная реализация алгоритма запоминания и восстановления образов.

Тема 4. Сети хэмминга.

Архитектура и назначение сети Хэмминга. Обучение и распознавание образа. Применение совместно с сетью Хопфилда.

Тема 5. Сети встречного распространения.

Архитектура самоорганизующейся карты Кохонена и звезды Гроссберга, объединенных в сеть встречного распространения. Обучение и распознавание образов. Программная реализация.

Тема 6. Когнитрон и неокогнитрон.

Архитектура Когнитрона Фукушимы, возможности сети. Инвариантное распознавание образов. Неокогнитрон как развитие и усложнение когнитрона. Программная реализация когнитрона, обучение когнитрона.

Тема 7. Генетические алгоритмы.

Эволюционный подход в технологиях искусственного интеллекта. Джон Холланд и генетические алгоритмы. Оптимизация поиска решения и метод грубой силы. Методы отбора популяции методом элит и рулетки. Программная реализация генетического алгоритма.

Тема 8. Искусственная жизнь.

Синтетическая этология. Модель биологической системы. Аспекты моделирования жизни.

Тема 9. Экспертные системы.

Логический подход в искусственном интеллекте. Задачи когнитологии. Возможность решения задачи методами когнитологии. Структура экспертной системы. Этапы проектирования экспертной системы. Специалисты, необходимые для разработки экспертной системы. Инструментальные средства и их классификация.

Тема 10. Алгоритмы муравья.

Оптимизация поиска кратчайшего пути методами муравьиной колонии в реализации Марко Дориго. Жадные алгоритмы и алгоритмы муравья. Программная реализация алгоритма.

4 МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ (УКАЗАНИЯ) ДЛЯ СТУДЕНТОВ ПО ИЗУЧЕНИЮ ДИСЦИПЛИНЫ

4.1 Общие методические рекомендации

В ходе изучения дисциплины достигается освоение студентами теории и практики разработки интеллектуальных информационных систем, формируется представление и навык реализации на современном языке программирования наиболее актуальных алгоритмов искусственного интеллекта.

Представленные материалы призваны организовать процесс изучения дисциплины «Основы искусственного интеллекта».

Список литературы позволяет использовать материалы как для подготовки к лабораторным работам, так и для организации самостоятельной подготовки, а также расширения представлений о направлениях исследований, так или иначе связанных с дисциплиной.

4.2 Методические рекомендации по подготовке к лекциям

Приступая к изучению курса «Основы искусственного интеллекта» студент должен иметь представление о ключевых направлениях исследований в области искусственного интеллекта, о междисциплинарных взаимосвязях и практическом применении получаемых в рамках курса знаний.

Самостоятельная подготовка к лекциям происходит до посещения занятий путем чтения рекомендованной литературы и выполнения задач, полученных на практических занятиях. Выполнение многих задач требует больше времени, чем отведено для работы в аудиториях университета.

Посещение лекции и активное участие в интерактивных формах обучения является еще одной формой самостоятельной работы студента. Конспектирование ключевых мыслей и программного кода не является обязательным компонентом такой работы, но рекомендуется, так как повышает эффективность выполнения заданий в ходе практических занятий.

Важной частью самостоятельной работы является периодическое повторение пройденного материала, что способствует более глубокому усвоению знаний и упрощает продвижение по пути освоения последующих тем.

4.3 Методические рекомендации по подготовке к лабораторным занятиям

Целью лабораторных занятий является закрепление теоретического материала лекций и выработка умения использования информационных и других ресурсов, предоставляемых университетом.

Подготовка к лабораторным работам предполагает изучение теоретического материала по указанной теме, с использованием конспектов лекций и дополнительной литературы. При необходимости можно обращаться за консультацией к преподавателю.

В процессе подготовки к занятиям рекомендуется взаимное обсуждение материала, во время которого закрепляются знания, а также приобретается практика в изложении и разъяснении полученных знаний, развивается речь.

В случае появления каких-либо вопросов следует обращаться к преподавателю в часы его консультаций.

Для проведения практических занятий используются компьютеры, оснащенные ОС Windows XP и выше, ОС Linux, Java Development Kit, NetBeans, система электронного образования университета. Возможно использование проектора или интерактивной доски.

4.5 Методические рекомендации к самостоятельной работе студентов

Самостоятельная работа студентов при изучении дисциплины «Основы искусственного интеллекта» организуется с целью формирования профессиональных компетенций, понимаемых как способность применять знания, умения и личностные качества для успешной деятельности в определенной области, в том числе:

- формирования умений по поиску и использованию различных источников информации;
- -качественного освоения и систематизации полученных теоретических знаний, их углубления и расширения по применению на уровне межпредметных связей;
 - -формирования умения применять полученные знания на практике;
- -развития познавательных способностей студентов, формирования самостоятельности мышления;
- -развития активности, творческой инициативы, самостоятельности, ответственности и организованности;
 - -формирования способностей к саморазвитию;
- В ходе изучения дисциплины «Основы искусственного интеллекта» предлагается выполнить различные виды самостоятельной работы:
 - -выполнение индивидуальных заданий лабораторных работ;
 - -подготовка к аудиторным занятиям;
- -изучение отдельных тем (вопросов) дисциплины в соответствии с учебнотематическим планом, составление конспектов;
 - -подготовка ко всем видам контрольных испытаний.
- В методических указаниях излагается порядок выполнения лабораторных работ. При выполнении работ используются Java Development Kit, NetBeans.
- К зачету по лабораторной работе предъявляется архивный файл NetBeans-проекта, сохраненный в своем личном кабинете В СЭО БГПУ.
- 4.6 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине:
- 1. Оценочные средства.
- 2. Задания.
- 3. Список тем для собеседования на экзамене.
- 4. Список литературы и информационных ресурсов.

Учебно-методическое обеспечение самостоятельной работы студентов по дисциплине

Nº	Наименование раздела (темы)	Формы/виды самостоятельной работы	Количество часов, в соответствии с учебно-тематическим планом
1.	Направления исследований искусственного интеллекта	Проработка теоретического материала по конспектам лекций	2
2.	Перцептрон Розенблатта	Проработка теоретического материала по конспектам лекций. Решение задач. Подготовка отчетов о выполнении лабораторных работ	6
3.	Сети Хопфилда	Проработка теоретического материала по конспектам лекций. Решение задач. Подготовка отчетов о выполнении лабораторных работ	6
4.	Сети Хэмминга	Проработка теоретического материала по конспектам лекций. Решение задач. Подготовка отчетов о выполнении лабораторных работ	4
5.	Сети встречного распространения	Проработка теоретического материала по конспектам лекций. Решение задач. Подготовка отчетов о выполнении лабораторных работ	6
6.	Когнитрон и неокогнитрон	Проработка теоретического материала по конспектам лекций. Решение задач. Подготовка отчетов о выполнении лабораторных работ	6
7.	Генетические алгоритмы	Проработка теоретического материала по конспектам лекций. Решение задач. Подготовка отчетов о выполнении лабораторных работ	8
8.	Искусственная жизнь	Проработка теоретического материала по конспектам лекций	4

9.		Проработка теоретического	
		материала по конспектам	
		лекций. Решение задач.	8
	Экспертные системы	Подготовка отчетов о вы-	0
		полнении лабораторных ра-	
		бот	
10.		Проработка теоретического	
		материала по конспектам	
	Алгоритмы муравья	лекций. Решение задач.	4
		Подготовка отчетов о вы-	4
		полнении лабораторных ра-	
		бот	
	ИТОГО		54

5 ПРАКТИКУМ ПО ДИСЦИПЛИНЕ

5.1 Перечень лабораторных работ

Тема 1. Реализация однослойного однонейронного перцептрона и обучение его трем логическим функциям «И», «ИЛИ», «НЕ»

Содержание

Программная реализация архитектуры однонейронного перцептрона в ходе лабораторной работы. Последовательное обучение запрограммированной структуры на таблицах истинности логических функций до положительного результата.

Литература:

- 1. Джонс М.Т. Программирование искусственного интеллекта в приложениях. М.: ДМК Пресс, 2011. 312 с.
- 2. Ягелло А.А. Основы искусственного интеллекта : учебно-метод. пособие для студ. вузов / А. А. Ягелло ; М-во образования и науки Рос. Федерации. Благовещенск : Изд-во БГПУ, 2010.-53 с.

Тема 2. Реализация двуслойного перцептрона и обучение его составной логической функции «Исключающее ИЛИ»

Содержание

Программная реализация архитектуры многослойного перцептрона в ходе лабораторной работы. Последовательное обучение запрограммированной структуры на таблицах истинности логических функции «Исключающее ИЛИ» до положительного результата.

Литература:

1. Осовский С. Нейронные сети для обработки информации. – М.: Финансы и статистика, 2004. – 344 с.

Тема 3. Реализация сети Хопфилда

Содержание

Реализация архитектуры сети Хопфилда на языке программирования Java в ходе выполнения лабораторной работы. Обучение сети нескольким образам букв и цифр. Демонстрация восстановления исходных образов из поврежденных.

Литература:

- 1. Осовский С. Нейронные сети для обработки информации. М.: Финансы и статистика, 2004. 344 с.
- 2. Рыбина Г.В. Основы построения интеллектуальных систем: учеб. пособие для студ. вузов / Г. В. Рыбина. М.: Финансы и статистика: ИНФРА-М, 2010.-430 с.

Тема 4. Сеть Хэмминга

Содержание

Дополнение сети Хопфилда возможностью распознавания образа с помощью сети Хэмминга. Реализация архитектуры сети на языке программирования Java и ее отдельное обучение в ходе выполнения лабораторной работы.

Литература:

- 1. Осовский С. Нейронные сети для обработки информации. М.: Финансы и статистика, 2004. 344 с.
- 2. Гаскаров, Д.В. Интеллектуальные информационные системы : учебник для студ. вузов / Д. В. Гаскаров. М. : Высш. шк., 2003. 430,[1] с.

Тема 5. Сети встречного распространения

Содержание

Реализация архитектуры самоорганизующейся карты Кохонена на языке программирования Java, ее обучение распознаванию произвольного числа образов. Реализация звезды Гроссберга, ее интеграция в сеть встречного распространения с картой Кохонена в ходе выполнения лабораторной работы.

Литература:

- 1. Осовский С. Нейронные сети для обработки информации. М.: Финансы и статистика, 2004. 344 с.
- 2. Гаскаров, Д.В. Интеллектуальные информационные системы: учебник для студ. вузов / Д. В. Гаскаров. М.: Высш. шк., 2003. 430,[1] с.

Тема 6. Когнитрон и неокогнитрон

Содержание

Реализация когнитрона на языке программирования Java в качестве лабораторной работы. Обучение без учителя распознаванию произвольных графических образов (буквы, цифры).

Литература:

- 1. Осовский С. Нейронные сети для обработки информации. М.: Финансы и статистика, 2004. 344 с.
- 2. Гаскаров, Д.В. Интеллектуальные информационные системы : учебник для студ. вузов / Д. В. Гаскаров. М. : Высш. шк., 2003. 430,[1] с.

Тема 7. Генетические алгоритмы

Содержание

Реализация алгоритма с методом элит в качестве средства отбора хромосом на языке программирования Java в качестве выполнения лабораторной работы. Реализация алгоритма с методом рулетки в качестве средства отбора хромосом. Обучение нейросети с помощью генетического алгоритма. Поиск кратчайшего пути с помощью генетического алгоритма.

Литература:

- 1. Джонс М.Т. Программирование искусственного интеллекта в приложениях. М.: ДМК Пресс, 2011. 312 с.
- 2. Осовский С. Нейронные сети для обработки информации. М.: Финансы и статистика, 2004. 344 с.

Тема 8. Искусственная жизнь

Содержание

Реализация модели пищевой цепочки Хищник-Травоядное-Растение. Разработка контролллера в виде нейросети для хищников и травоядных на языке программирования Java. Реализоация графического интерфейса, репрезентирующего пошаговое взаимодействие агентов в модели пищевой цепочки в качестве завершения лабораторной работы.

Литература:

- 1. Джонс М.Т. Программирование искусственного интеллекта в приложениях. М.: ДМК Пресс, 2011. 312 с.
- 2. Осовский С. Нейронные сети для обработки информации. М.: Финансы и статистика, 2004. 344 с.

Тема 9. Экспертные системы

Содержание

Написание простой статической продукционной экспертной системы диагностического типа с использованием диалекта языка Пролог tuProlog (2P) и Java в качестве выполнения лабораторной работы.

Литература:

- 1. Гаскаров, Д.В. Интеллектуальные информационные системы: учебник для студ. вузов / Д. В. Гаскаров. М.: Высш. шк., 2003. 430,[1] с.
- 2. Осовский С. Нейронные сети для обработки информации. М.: Финансы и статистика, 2004. 344 с.
 - 3. Нейлор К. Как построить свою экспертную систему. М.: Энергоатомиздат, 1991. 286 с.

Тема 10. Алгоритмы муравья

Содержание

Реализация алгоритма муравья средствами языка программирования Java для решения задачи коммивояжера в ходе выполнения лабораторной работы.

Литература:

1. Гаскаров, Д.В. Интеллектуальные информационные системы: учебник для студ. вузов / Д. В. Гаскаров. – М.: Высш. шк., 2003. – 430,[1] с.

2. Осовский С. Нейронные сети для обработки информации. – М.: Финансы и статистика, 2004. - 344 с.

6 ДИДАКТИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ КОНТРОЛЯ (САМОКОНТРОЛЯ) УСВОЕННОГО МАТЕРИАЛА

6.1 Перечень компетенций с указанием этапов их формирования в процессе освоения дисциплины

Индекс компе- тенции	Оценочное средство	Показатели оценивания	Критерии оценивания сформированности компетенций
	Собеседова-	Низкий (неудовлетворительно)	Студент отвечает неправильно, нечетко и неубедительно, дает неверные формулировки, в ответе отсутствует какоелибо представление о вопросе
ПК-2		Пороговый (удовлетворительно)	Студент отвечает неконкретно, слабо аргументировано и не убедительно, хотя и имеется какое-то представление о вопросе
11K-2	ние	Базовый (хорошо)	Студент отвечает в целом правильно, но недостаточно полно, четко и убедительно
		Высокий (отлично)	Ставится, если продемонстрированы знание вопроса и самостоятельность мышления, ответ соответствует требованиям правильности, полноты и аргументированности.
		Низкий (неудовлетворительно)	Ответ студенту не зачитывается если: • Задание выполнено менее, чем на половину; • Студент обнаруживает незнание большей части соответствующего материала, допускает ошибки в формулировке определений и правил, искажающие их смысл, беспорядочно излагает материал.
ПК-2	ПК-2 Разноуровневые задачи и задания Пороговый (удовлетворительно)		Задание выполнено более, чем на половину. Студент обнаруживает знание и понимание основных положений задания, но: • Излагает материал неполно и допускает неточности в определении понятий; • Не умеет достаточно глубоко и доказательно обосновать свои суждения и привести свои примеры; • Излагает материал непоследовательно и допускает ошибки в языковом

	1 .
	оформлении излагаемого.
Базовый (хорошо)	Задание в основном выполнено. Ответы правильные, но: • В ответе допущены малозначительные ошибки и недостаточно полно раскрыто содержание вопроса; • Не приведены иллюстрирующие примеры, недостаточно чётко выражено обобщающие мнение студента; • Допущено 1-2 недочета в последовательности и языковом оформлении излагаемого.
Высокий (отлично)	Задание выполнено в максимальном объеме. Ответы полные и правильные. • Студент полно излагает материал, дает правильное определение основных понятий; • Обнаруживает понимание материала, может обосновать свои суждения, применить знания на практике, привести необходимые примеры; • Излагает материал последовательно и правильно с точки зрения норм литературного языка.

6.2 Промежуточная аттестация студентов по дисциплине

Промежуточная аттестация является проверкой всех знаний, навыков и умений студентов, приобретённых в процессе изучения дисциплины. Формой промежуточной аттестации по дисциплине является зачет.

Для оценивания результатов освоения дисциплины применяется следующие критерии оценивания.

Критерии оценивания устного ответа на зачете

<u>Оценка «зачтено»</u> выставляется студенту, если:

- прочно усвоил предусмотренный программный материал; вопросы раскрыты, изложены логично, без существенных ошибок;
- правильно, аргументировано ответил на все вопросы, показано умение иллюстрировать теоретические положения конкретными примерами;
- показал глубокие систематизированные знания, владеет приемами рассуждения и сопоставляет материал из разных источников: теорию связывает с практикой, другими темами данного курса, других изучаемых предметов;
- допустил незначительные ошибки.

Оценка «не зачтено» выставляется студенту, если:

- не раскрыл основное содержание учебного материала;
- показал незнание или непонимание большей, или наиболее важной части учебного материала;
- допустил ошибки в определении понятий, которые не исправил после нескольких наводящих вопросов;

• не может ответить на дополнительные вопросы, предложенные преподавателем или, в ответах на другие вопросы допустил существенные ошибки.

6.3 Типовые контрольные задания или иные материалы, необходимые для оценки результатов освоения дисциплины

Перечень примерных вопросов и заданий к зачету

- 1. В чем отличие логического подхода от структурного и эволюционного?
- 2. Каковы возможности однослойного перцептрона?
- 3. В чем заключается проблема линейной разделимости?
- 4. Какие существуют активационные функции в моделях нейронов?
- 5. Каков принцип работы алгоритма обратного распространения ошибки?
- 6. Что такое обучение с учителем и без учителя?
- 7. Принцип локального обучения.
- 8. Как рассчитывается ошибка на выходе перцептрона?
- 9. Что такое ассоциативная память?
- 10. Как добиться конкуренции фона и объекта при восстановлении объекта с помощью сети Хопфилда?
- 11. Можно ли использовать различные архитектуры нейросетей совместно и какие преимущества можно из этого получить?
 - 12. Что такое инвариантное распознавание?
 - 13. Каковы движущие силы эволюции по мнению Ламарка и Дарвина?
- 14. Принципы Ламарка в генетических алгоритмах, в каких ситуациях лучше применять их, а не принципы Дарвина?
 - 15. В чем опасность метода элит при отборе хромосом в генетических алгоритмах?
- 16. В чем недостатки метода рулетки при отборе хромосом в генетических алгоритмах?
- 17. Что представляет собой проблема эпистазиса при рекомбинации генетического материала?
- 18. Какие задачи можно решать с помощью генетических алгоритмах и для каких задач это имеет практический смысл?
- 19. Какие практические применения можно найти исследованиям в области искусственной жизни?
 - 20. Какие типы задач следует решать методами когнитологии?
- 21. В каких направлениях могут развиваться экспертные системы как вид программного обеспечения?
- 22. Какой специалист является «бутылочным горлышком» в производстве экспертных систем?
- 23. Какие инструментальные средства предпочтительны для разработки статических продукционных поверхностных экспертных систем?
 - 24. Каковы перспективы развития идеи мультиагентных систем?
- 25. Какие задачи кроме поиска кратчайшего пути можно сформулировать для алгоритма муравья?

Задачи

- 1. Создать однонейронный перцептрон и обучить его трем базовым логическим функциям
- 2. Создать двуслойный перцептрон и обучить его «исключающему ИЛИ».
- 3. Обучить перцептрон произвольной конфигурации распознаванию всех арабских цифр.
- 4. Обучить сеть Хопфилда восстановлению нескольких букв русского алфавита.

- 5. Добавить к сети Хопфилда, восстанавливающей буквы русского алфавита, сеть Хэмминга, которая будет решать проблему распознавания восстановленного образа.
- 6. Реализовать сеть встречного распространения, обучить распознаванию арабских цифр. Сравнить с эффективностью распознавания предыдущих реализованных архитектур.
- 7. Реализовать Когнитрон Фукушимы. Обучить распознаванию арабских цифр.
- 8. Реализовать генетический алгоритм для максимизации произвольно выбранной функции.
- 9. Реализовать генетический алгоритм для обучения перцептрона.
- 10. Реализовать модель пищевой цепочки.
- 11. Реализовать простую экспертную систему диагностического типа: выбор товара, диагностика неполадок и заболеваний, выбор рецепта для приготовления блюда на основе имеющихся ингредиентов.
- 12. Реализовать алгоритм муравья для решения задачи коммивояжера.

7 ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ В ПРОЦЕССЕ ОБУЧЕНИЯ

Информационные технологии — обучение в электронной образовательной среде с целью расширения доступа к образовательным ресурсам, увеличения контактного взаимодействия с преподавателем, построения индивидуальных траекторий подготовки, объективного контроля и мониторинга знаний студентов.

В образовательном процессе по дисциплине используются следующие информационные технологии, являющиеся компонентами Электронной информационнообразовательной среды БГПУ:

- Официальный сайт БГПУ;
- Система электронного обучения ФГБОУ ВО «БГПУ»;
- Система «Антиплагиат.ВУЗ»;
- Электронные библиотечные системы;
- Мультимедийное сопровождение лекций и практических занятий;
- текстовый процессор Microsoft Office Word;
- офисное приложение Microsoft Office Excel;
- офисное приложение Microsoft Office Power Point;
- 1) средства разработки Java: JDK, JRE, NetBeans.

8 ОСОБЕННОСТИ ИЗУЧЕНИЯ ДИСЦИПЛИНЫ ИНВАЛИДАМИ И ЛИЦАМИ С ОГРАНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ

При обучении лиц с ограниченными возможностями здоровья применяются адаптивные образовательные технологии в соответствии с условиями, изложенными в раздел «Особенности организации образовательного процесса по образовательным программам для инвалидов и лиц с ограниченными возможностями здоровья» основной образовательной программы (использование специальных учебных пособий и дидактических материалов, специальных технических средств обучения коллективного и индивидуального пользования, предоставление услуг ассистента (помощника), оказывающего обучающимся необходимую техническую помощь и т.п.) с учётом индивидуальных особенностей обучающихся.

9 СПИСОК ЛИТЕРАТУРЫ И ИНФОРМАЦИОННЫХ РЕСУРСОВ

9.1 Литература

- 1. Бессмертный, И. А. Интеллектуальные системы: учебник и практикум для вузов / И. А. Бессмертный, А. Б. Нугуманова, А. В. Платонов. Москва: Издательство Юрайт, 2022. 243 с. (Высшее образование). ISBN 978-5-534-01042-8. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/490020 (дата обращения: 10.10.2022).
- 2. Воронов, М. В. Системы искусственного интеллекта: учебник и практикум для вузов / М. В. Воронов, В. И. Пименов, И. А. Небаев. Москва: Издательство Юрайт, 2022. 256 с. (Высшее образование). ISBN 978-5-534-14916-6. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/485440 (дата обращения: 10.10.2022).
- 3. Гаскаров Д.В. Интеллектуальные информационные системы : учебник для студ. вузов / Д. В. Гаскаров. М. : Высш. шк., 2003. 430 с. (10 экз.)
- 4. Кудрявцев, В. Б. Интеллектуальные системы: учебник и практикум для вузов / В. Б. Кудрявцев, Э. Э. Гасанов, А. С. Подколзин. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2022. 165 с. (Высшее образование). ISBN 978-5-534-07779-7. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/491107 (дата обращения: 10.10.2022).
- 5. Ягелло А.А. Основы искусственного интеллекта: учебно-метод. пособие для студ. вузов / А. А. Ягелло; М-во образования и науки Рос. Федерации. Благовещенск: Изд-во БГПУ, 2010. 53 с. (16 экз.)

9.2 Базы данных и информационно-справочные системы

- 1. Федеральный портал «Российское образование» Режим доступа: http://www.edu.ru
- 2. Информационная система «Единое окно доступа к образовательным ресурсам» Режим доступа: http://www.window.edu.ru
- 3. Федеральный центр информационно-образовательных ресурсов Режим доступа: http://fcior.edu.ru
- 4. Сайт Федеральной службы по интеллектуальной собственности, патентам и товарным знакам (Роспатента). Режим доступа: http://www.fips.ru/rospatent/index.htm

9.3 Электронно-библиотечные ресурсы

- 1. ЭБС «Юрайт». Режим доступа: https://urait.ru
- 2. Полпред (обзор СМИ). Режим доступа: https://polpred.com/news

10 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА

Для проведения занятий лекционного и семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации оснащённые учебной мебелью, используются аудитории, аудиторной компьютером(рами) с установленным лицензионным специализированным программным обеспечением, коммутатором для выхода в электронно-библиотечную систему и электронную информационно-образовательную БГПУ, среду мультимедийными проекторами, экспозиционными экранами, учебно-наглядными пособиями (мультимедийные презентации).

Самостоятельная работа студентов организуется в аудиториях оснащенных компьютерной техникой с выходом в электронную информационно-образовательную среду вуза, в специализированных лабораториях по дисциплине, а также в залах доступа в локальную сеть БГПУ, в лаборатории психолого-педагогических исследований и др.

Лицензионное программное обеспечение: операционные системы семейства Windows, Linux; офисные программы Microsoft office, Libreoffice, OpenOffice; Java Development Kit, NetBeans.

Разработчик: Ягелло А.А., старший преподаватель кафедры информатики и методики преподавания информатики.

11 ЛИСТ ИЗМЕНЕНИЙ И ДОПОЛНЕНИЙ

Утверждение изменений и дополнений в РПД для реализации в 2020/2021 уч. г.

РПД обсуждена и одобрена для реализации в 2020/2021 уч. г. на заседании кафедры информатики и методики преподавания информатики (протокол № 8 от «17» июня 2020 г.). В РПД внесены следующие изменения и дополнения:

№ изменения: 1	
№ страницы с изменением: на титульном	
листе	
Исключить:	Включить:
Текст: МИНИСТЕРСТВО НАУКИ И	Текст: МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ
ВЫСШЕГО ОБРАЗОВАНИЯ РФ	РОССИЙСКОЙ ФЕДЕРАЦИИ

Утверждение изменений и дополнений в РПД для реализации в 2021/2022 уч. г.

РПД обсуждена и одобрена для реализации в 2021/2022 уч. г. без изменений на заседании кафедры информатики и методики преподавания информатики (протокол № 7 от 21.04.2021 г.).

Утверждение изменений и дополнений в РПД для реализации в 2022/2023 уч. г.

РПД пересмотрена, обсуждена и одобрена для реализации в 2022/2023 учебном году на заседании кафедры информатики и методики преподавания информатики (протокол №1 от 21 сентября 2022 г.).

В рабочую программу внесены следующие изменения и дополнения:

№ изменения: 1	
№ страницы с изменением: 16	
В Разлел 9 внесены изменения в список пи	гературы, в базы данных и информационно-

В Раздел 9 внесены изменения в список литературы, в базы данных и информационносправочные системы, в электронно-библиотечные ресурсы. Указаны ссылки, обеспечивающие доступ обучающимся к электронным учебным изданиям и электронным образовательным ресурсам с сайта ФГБОУ ВО «БГПУ».